Theory of solid state quantum information processing
نویسنده
چکیده
Recent theoretical work on solid-state proposals for the implementation of quantum computation and quantum information processing is reviewed. The differences and similarities between microscopic and macroscopic qubits are highlighted and exemplified by the spin qubit proposal on one side and the superconducting qubits on the other. Before explaining the spin and supercondcuting qubits in detail, some general concepts that are relevant for both types of solid-state qubits are reviewed. The controlled production of entanglement in solid-state devices, the transport of carriers of entanglement, and entanglement detection will be discussed in the final part of this review.
منابع مشابه
Decoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملExploring the implications of the laws and principles of quantum physics in the field of talent (quantum theory of talent)
The issue of talent-discovering is one of the most important issues in the field of education and research that has always been a concern for educational systems. Studying the issues of identifying and guiding talented students can illuminate a large part of the activities of the executors and practitioners in order to accomplish their mission effectively. On the other hand, quantum physics has...
متن کاملGeometric Quantum Computation on Solid-State Qubits
Geometric quantum computation is a scheme to use non-Abelian Holonomic operations rather than the conventional dynamic operations to manipulate quantum states for quantum information processing. Here we propose a geometric quantum computation scheme which can be realized with current technology on nanoscale Josephson-junction networks, known as a promising candidate for solid-state quantum comp...
متن کاملDisorder-induced valley-orbit hybrid states in Si quantum dots
Quantum dots in silicon are promising candidates for the implementation of solid-state quantum information processing. It is important to understand the effects of the multiple conduction band valleys of silicon on the properties of these devices. Here we present a systematic effective mass theory of valley-orbit coupling in disordered silicon systems. This theory reveals valley-orbit hybridiza...
متن کاملNMR Quantum Information Processing
Nuclear magnetic resonance (NMR) has provided a valuable experimental testbed for quantum information processing (QIP). Here, we briefly review the use of nuclear spins as qubits, and discuss the current status of NMR-QIP. Advances in the techniques available for control are described along with the various implementations of quantum algorithms and quantum simulations that have been performed u...
متن کامل